Association between morphologic distortion of sickle cells and deoxygenation-induced cation permeability increase.
نویسندگان
چکیده
We hypothesized that the deoxygenation-induced increase in cation permeability of sickle cells was related to mechanical distention of the membrane by growing HbS polymer within the cell. To test this hypothesis, we determined the effect of deoxygenation on cation fluxes in sickle cells under conditions that restricted or permitted extensive growth of polymer, producing different degrees of membrane distention. Manipulation of suspending medium osmolality for density-isolated high and low mean cell hemoglobin concentration (MCHC) cells was used to regulate the extensional growth of polymer bundles and hence membrane distortion. For initially low MCHC cells, the deoxygenation-induced increase in both Na and K fluxes was markedly suppressed when the MCHC was increased by increasing the osmolality. This suppression corresponded to the inhibition of extensive morphologic cellular distortion. For initially high MCHC, ISC-rich cells, deoxygenation had minimal effect on K permeability. However, reduction of MCHC by a decrease in osmolality produced a concomitant increase in cation permeability and cellular distortion. These observations support the idea that the sickling-associated increase in membrane permeability is related to mechanical stress imposed on the membrane by bundles of HbS polymer.
منابع مشابه
Deoxygenation-induced cation fluxes in sickle cells: II. Inhibition by stilbene disulfonates.
Deoxygenation-induced cation movements in sickle cells were inhibited 80% to 85% by the anion transport inhibitor, 4,4'-diisothiocyano-2,2'disulfostilbene (DIDS). Morphologic sickling was not altered by DIDS treatment, demonstrating that morphologic sickling was not sufficient to produce cation leaks in sickle cells. DIDS inhibition of deoxygenation-induced cation flux was not affected when l- ...
متن کاملPermeability characteristics of deoxygenated sickle cells.
This study investigated the effect of acute deoxygenation on membrane permeability characteristics of sickle cells. Measured fluxes of Na+ and K+ in ouabain-inhibited cells, of chloride and sulfate exchange in 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS)-inhibited and untreated cells, and of erythritol, mannitol, and arabinose in cytochalasin B-inhibited cells indicated that a deoxygenat...
متن کاملDeoxygenation-Induced Cation Fluxes in Sickle Cells: 11. Inhibition by Stilbene Disulfonates
Deoxygenation-induced cation movements in sickle cells were inhibited 80% to 85% by the anion transport inhibitor, 4,4’-diisothiocyano-2,2’disulfostilbene (DIDS). Morphologic sickling was not altered by DlDS treatment, demonstrating that morphologic sickling was not sufficient to produce cation leaks in sickle cells. DlDS inhibition of deoxygenationinduced cation flux was not affected when Irep...
متن کاملHypoxia Activates a Ca2+-Permeable Cation Conductance Sensitive to Carbon Monoxide and to GsMTx-4 in Human and Mouse Sickle Erythrocytes
BACKGROUND Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca(2+)] ([Ca(2+)](i)) and subsequent activation of K(Ca) 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likeli...
متن کاملThe effect of deoxygenation on whole-cell conductance of red blood cells from healthy individuals and patients with sickle cell disease.
Red blood cells from patients with sickle cell disease (SCD) exhibit increased electrogenic cation permeability, particularly following deoxygenation and hemoglobin (Hb) polymerisation. This cation permeability, termed P(sickle), contributes to cellular dehydration and sickling, and its inhibition remains a major goal for SCD treatment. Nevertheless, its characteristics remain poorly defined, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 68 2 شماره
صفحات -
تاریخ انتشار 1986